
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Memory-unsafe Languages

● languages that do not provide built-in memory safety mechanisms,
allowing developers direct control over memory allocation and
deallocation. This control increases performance and flexibility but also
introduces risks like buffer overflows, use-after-free, and memory leaks.

● Example: C/C++, assembly, objective-C
● You have seen examples of memory-unsafe functions developed in such

language, such as strcpy(), strncpy(), memcpy()

Format String Vulnerability

Brief History of Format String Attacks

● In the summer of 2000, the security community became aware of a
significant new type of vulnerability, identified as format string bugs.

● The issue gained attention when an exploit for the Washington University
FTP daemon (WU-FTPD) was posted on the Bugtraq mailing list on June 23,
2000.

● The exploit allowed remote attackers to gain root access to systems running
WU-FTPD without authentication if anonymous FTP was enabled.

● The vulnerability was particularly high profile due to WU-FTPD's widespread
use on the Internet.

Format string vulnerabilities occur when programmers pass externally sup-
plied data to a printf function (or similar) as, or as part of, the format string

argument.

Format String Bugs

Format string vulnerabilities fall under the umbrella of input validation
bugs
● the basic problem is that programmers fail to prevent untrusted

externally supplied data from being included in the format string
argument.

Format String Bugs

Format string bugs are caused by not specifying format string characters in
the arguments to functions that utilize the va_arg variable argument lists.

Unlike buffer overflows, in that no stacks are being smashed and no data is
being corrupted in large amounts directly. Instead, when an attacker
controls arguments of the function, the intricacies in the variable argument
lists allow them to view or overwrite arbitrary data.

Format string bugs are easy to fix, without affecting application logic.

C function with Variable Arguments

● A function where the number of arguments is not known, or is not constant,
when the function is written. However, the number of arguments is
known, when the function is used/called.

● Include <stdarg.h>, which introduce a type va_list, and three
functions/macros that operate on objects of this type, called va_start,
va_arg, and va_end.

Variable Argument Example: average
#include <stdio.h>
#include <stdarg.h>

double average(size_t num,...) {

 va_list valist;
 double sum = 0.0;
 int i;

 va_start(valist, num);

 for (i = 0; i < num; i++) {
 sum += va_arg(valist, int);}

 va_end(valist);

 num != 0? return sum/num : return 0;}

int main() {
 printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2, 3, 4, 5));
 printf("Average of 5, 10, 15 = %f\n", average(3, 5, 10, 15));
}

https://www.tutorialspoint.com/cprogramming/c_variable_arguments.htm

https://www.tutorialspoint.com/cprogramming/c_variable_arguments.htm

Average: first call of printf()

RET

Saved ebp

Func main’s data

RET

Saved ebp

1st Arg = 4

2nd Arg = 2

3rd Arg = 3

4th Arg = 4

5th Arg = 5
va_arg

Variable Argument Example: average_wrong
#include <stdio.h>
#include <stdarg.h>

double average(int num,...) {

 va_list valist;
 double sum = 0.0;
 int i;

 va_start(valist, num);

 for (i = 0; i < num; i++) {
 sum += va_arg(valist, int);}

 va_end(valist);

 return sum/num;}

int main() {
 printf("Average of 2, 3, 4, 5 = %f\n", average(5, 2, 3, 4, 5));
 printf("Average of 5, 10, 15 = %f\n", average(4, 5, 10, 15));
}

Average_wrong: first call of printf()

RET

Saved ebp

Func main’s data

RET

Saved ebp

1st Arg = 4

2nd Arg = 2

3rd Arg = 3

4th Arg = 4

5th Arg = 5

va_arg

C++ Function Overloading cppol

● Function overloading is a feature in C++ where two or
more functions can have the same name but different
parameters.

#include <stdio.h>

double average(int i, int j, int k) {
 return (i + j + k) / 3;}

double average(int i, int j, int k, int l) {
 return (i + j + k + l) / 4;}

int main() {
 printf("Average of 2, 3, 4, 5 = %f\n", average(2, 3, 4, 5));
 printf("Average of 5, 10, 15 = %f\n", average(5, 10, 15));
}

C++ Overloading Example

Format string functions

Functionality
● used to convert simple C datatypes to a string representation
● allow to specify the format of the representation
● process the resulting string (output to stderr, stdout, syslog, ...)

How the format function works
● the format string controls the behaviour of the function
● it specifies the type of parameters that should be printed
● parameters are saved on the stack (pushed)
● saved either directly (by value), or indirectly (by reference)

The calling function
● has to know how many parameters it pushes to the stack, since it

has to do the stack correction, when the format function returns

Format string function prototypes

The format string family

fprintf — prints to a FILE stream
printf — prints to the ‘stdout’ stream
sprintf — prints into a string
snprintf — prints into a string with length checking
vfprintf — print to a FILE stream from a va_arg structure
vprintf — prints to ‘stdout’ from a va_arg structure
vsprintf — prints to a string from a va_arg structure
vsnprintf — prints to a string with length checking from a va_arg structure

setproctitle — set argv[]
syslog — output to the syslog facility
others like err*, verr*, warn*, vwarn*

https://www.gnu.org/software/libc/manual/html_node/Error-Messages.html

What is a Format String?

C string (ASCII string) that contains the text to be written. It can
optionally contain embedded format specifiers that are replaced by the
values specified in subsequent additional arguments and formatted as
requested.

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

% is \x25

http://www.cplusplus.com/reference/cstdio/printf/

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

Format String Examples

 printf ("Characters: %c %c \n", 'a', 65);
 printf ("Decimals: %d %ld\n", 1977, 650000L);
 printf ("Preceding with blanks: %10d \n", 1977);
 printf ("Preceding with zeros: %010d \n", 1977);
 printf ("Some different radices: %d %x %o %#x %#o \n", 100, 100, 100, 100, 100);
 printf ("floats: %4.2f %+.0e %E \n", 3.1416, 3.1416, 3.1416);
 printf ("Width trick: %*d \n", 5, 10);
 printf ("%s \n", "A string");

Characters: a A
Decimals: 1977 650000
Preceding with blanks: 1977
Preceding with zeros: 0000001977
Some different radices: 100 64 144 0x64 0144
floats: 3.14 +3e+000 3.141600E+000
Width trick: 10
A string

Matching Format Tokens and Arguments

printf ("Characters: %c %c \n", 'a', 65);

Format string
Matching arguments

Simplified printf() implementation
void my_printf(const char *format, ...) {
 va_list args;
 va_start(args, format);

 while (*format) { // Iterate through the format string
 if (*format == '%' && *(format + 1)) {

// Detect format specifier
 format++; // Move to format character
 switch (*format) {
 case 'd': {
 int i = va_arg(args, int);
 printf("%d", i); // Print integer
 break;
 }
 case 's': {
 char *s = va_arg(args, char *);
 printf("%s", s); // Print string
 break;
 }

 case 'c': {
 char c = (char) va_arg(args, int);

 // char is promoted to int in va_arg
 putchar(c);
 break;
 }
 default:
 putchar('%'); // Handle unknown format
specifier
 putchar(*format);
 break;
 }
 } else {
 putchar(*format); // Print regular characters
 }
 format++; // Move to next character
 }

 va_end(args); // Clean up va_list
}

%n format string
Code: formatsn

int foo()
{

int a = 0;
int b = 0;
printf("a is %d; b is %d\n", a, b);
printf("[Changing a and b..]%n12345%n\n", &a, &b);
printf("a is %d; b is %d\n", a, b);

printf("[Changing a and b..]%020d %n%n\n", 50, &a, &b);
printf("a is %d; b is %d\n", a, b);

printf("[Changing a and b..]floats: %010.2f%n\n", 3.1416, &a);
printf("a is %d.\n", a);

return 0;

}

POSIX Extension: n$

n$

n is the number of the parameter to display using this format specifier, allowing
the parameters provided to be output multiple times, using varying format
specifiers or in different orders. If any single placeholder specifies a parameter,
all the rest of the placeholders MUST also specify a parameter.

For example, printf("%2$d %2$#x; %1$d %1$#x",16,17) produces 17 0x11; 16
0x10

How could this go wrong? printf(user_input)!

● The format string determines how many arguments to look for.

● What if the caller does not provide the same number of the
arguments? More than the function (e.g. printf) looks for? Or fewer
than the function looks for?

● What if the format string is not hard-coded? The user can provide the
format string.

Format string vulnerability is considered as a
programming bug

Wrong usage - user controls the format string.

int func (char *user) { printf (user); }

Correct usage - format string is hard-coded.

int func (char *user) { printf ("%s", user); }

formats1

int vulfoo()
{

char s[20];

printf("What is your input?\n");
gets(s);

printf(s);
return 0;

}

int main() {
return vulfoo();

}

Canary enabled; NX enabled

formats1

RET

Saved ebp

s

0x20 = 32
bytes

Vulfoo
Stack
frame

Canaryebp - 0xc

0x20 - 0xc =
0x14 = 20

0000122d <vulfoo>:
 122d: f3 0f 1e fb endbr32
 1231: 55 push ebp
 1232: 89 e5 mov ebp,esp
 1234: 53 push ebx
 1235: 83 ec 24 sub esp,0x24
 1238: e8 f3 fe ff ff call 1130 <__x86.get_pc_thunk.bx>
 123d: 81 c3 8f 2d 00 00 add ebx,0x2d8f
 1243: 65 a1 14 00 00 00 mov eax,gs:0x14
 1249: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 124c: 31 c0 xor eax,eax
 124e: 83 ec 0c sub esp,0xc
 1251: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4]
 1257: 50 push eax
 1258: e8 73 fe ff ff call 10d0 <puts@plt>
 125d: 83 c4 10 add esp,0x10
 1260: 83 ec 0c sub esp,0xc
 1263: 8d 45 e0 lea eax,[ebp-0x20]
 1266: 50 push eax
 1267: e8 44 fe ff ff call 10b0 <gets@plt>
 126c: 83 c4 10 add esp,0x10
 126f: 83 ec 0c sub esp,0xc
 1272: 8d 45 e0 lea eax,[ebp-0x20]
 1275: 50 push eax
 1276: e8 25 fe ff ff call 10a0 <printf@plt>
 127b: 83 c4 10 add esp,0x10
 127e: b8 00 00 00 00 mov eax,0x0
 1283: 8b 55 f4 mov edx,DWORD PTR [ebp-0xc]
 1286: 65 33 15 14 00 00 00 xor edx,DWORD PTR gs:0x14
 128d: 74 05 je 1294 <vulfoo+0x67>
 128f: e8 ac 00 00 00 call 1340 <__stack_chk_fail_local>
 1294: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 1297: c9 leave
 1298: c3 ret

RET

Saved ebp

printf Stack
frame

?

1st Arg = Addr of s

formats1

RET

Saved ebp

s = “%x %x”

0x20 = 32
bytes

Vulfoo
Stack
frame

Canaryebp - 0xc

0x20 - 0xc =
0x14 = 20

0000122d <vulfoo>:
 122d: f3 0f 1e fb endbr32
 1231: 55 push ebp
 1232: 89 e5 mov ebp,esp
 1234: 53 push ebx
 1235: 83 ec 24 sub esp,0x24
 1238: e8 f3 fe ff ff call 1130 <__x86.get_pc_thunk.bx>
 123d: 81 c3 8f 2d 00 00 add ebx,0x2d8f
 1243: 65 a1 14 00 00 00 mov eax,gs:0x14
 1249: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 124c: 31 c0 xor eax,eax
 124e: 83 ec 0c sub esp,0xc
 1251: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4]
 1257: 50 push eax
 1258: e8 73 fe ff ff call 10d0 <puts@plt>
 125d: 83 c4 10 add esp,0x10
 1260: 83 ec 0c sub esp,0xc
 1263: 8d 45 e0 lea eax,[ebp-0x20]
 1266: 50 push eax
 1267: e8 44 fe ff ff call 10b0 <gets@plt>
 126c: 83 c4 10 add esp,0x10
 126f: 83 ec 0c sub esp,0xc
 1272: 8d 45 e0 lea eax,[ebp-0x20]
 1275: 50 push eax
 1276: e8 25 fe ff ff call 10a0 <printf@plt>
 127b: 83 c4 10 add esp,0x10
 127e: b8 00 00 00 00 mov eax,0x0
 1283: 8b 55 f4 mov edx,DWORD PTR [ebp-0xc]
 1286: 65 33 15 14 00 00 00 xor edx,DWORD PTR gs:0x14
 128d: 74 05 je 1294 <vulfoo+0x67>
 128f: e8 ac 00 00 00 call 1340 <__stack_chk_fail_local>
 1294: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 1297: c9 leave
 1298: c3 ret

RET

Saved ebp

printf Stack
frame

?

1st Arg = Addr of s

2nd Arg : integer

3rd Arg : integer

formats1

RET

Saved ebp

s = “%s %s”

0x20 = 32
bytes

Vulfoo
Stack
frame

Canaryebp - 0xc

0x20 - 0xc =
0x14 = 20

0000122d <vulfoo>:
 122d: f3 0f 1e fb endbr32
 1231: 55 push ebp
 1232: 89 e5 mov ebp,esp
 1234: 53 push ebx
 1235: 83 ec 24 sub esp,0x24
 1238: e8 f3 fe ff ff call 1130 <__x86.get_pc_thunk.bx>
 123d: 81 c3 8f 2d 00 00 add ebx,0x2d8f
 1243: 65 a1 14 00 00 00 mov eax,gs:0x14
 1249: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 124c: 31 c0 xor eax,eax
 124e: 83 ec 0c sub esp,0xc
 1251: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4]
 1257: 50 push eax
 1258: e8 73 fe ff ff call 10d0 <puts@plt>
 125d: 83 c4 10 add esp,0x10
 1260: 83 ec 0c sub esp,0xc
 1263: 8d 45 e0 lea eax,[ebp-0x20]
 1266: 50 push eax
 1267: e8 44 fe ff ff call 10b0 <gets@plt>
 126c: 83 c4 10 add esp,0x10
 126f: 83 ec 0c sub esp,0xc
 1272: 8d 45 e0 lea eax,[ebp-0x20]
 1275: 50 push eax
 1276: e8 25 fe ff ff call 10a0 <printf@plt>
 127b: 83 c4 10 add esp,0x10
 127e: b8 00 00 00 00 mov eax,0x0
 1283: 8b 55 f4 mov edx,DWORD PTR [ebp-0xc]
 1286: 65 33 15 14 00 00 00 xor edx,DWORD PTR gs:0x14
 128d: 74 05 je 1294 <vulfoo+0x67>
 128f: e8 ac 00 00 00 call 1340 <__stack_chk_fail_local>
 1294: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 1297: c9 leave
 1298: c3 ret

RET

Saved ebp

printf Stack
frame

?

1st Arg = Addr of s

2nd Arg : address

3rd Arg : address

What can we do by abusing the format string?

● View part of the stack

%x.%x.%x.%x.%x.%x

%08x.%08x.%08x.%08x.%08x.%08x

● Crash the program

%s%s%s%s%s%s

%n%n%n

formats2

char *p1 = CENSORED;

char *p2 = CENSORED;

int vulfoo()

{

char tmpbuf[120];

gets(tmpbuf);

printf(tmpbuf);

return 0;

}

int main() {

printf("Secret are at %p and %p. Can you read them?\n", p1, p2);

return vulfoo();

}

Canary enabled; NX enabled

formats2
0000120d <vulfoo>:
 120d: f3 0f 1e fb endbr32
 1211: 55 push ebp
 1212: 89 e5 mov ebp,esp
 1214: 53 push ebx
 1215: 81 ec 84 00 00 00 sub esp,0x84
 121b: e8 f0 fe ff ff call 1110 <__x86.get_pc_thunk.bx>
 1220: 81 c3 b0 2d 00 00 add ebx,0x2db0
 1226: 65 a1 14 00 00 00 mov eax,gs:0x14
 122c: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 122f: 31 c0 xor eax,eax
 1231: 83 ec 0c sub esp,0xc
 1234: 8d 85 7c ff ff ff lea eax,[ebp-0x84]
 123a: 50 push eax
 123b: e8 60 fe ff ff call 10a0 <gets@plt>
 1240: 83 c4 10 add esp,0x10
 1243: 83 ec 0c sub esp,0xc
 1246: 8d 85 7c ff ff ff lea eax,[ebp-0x84]
 124c: 50 push eax
 124d: e8 3e fe ff ff call 1090 <printf@plt>
 1252: 83 c4 10 add esp,0x10
 1255: b8 00 00 00 00 mov eax,0x0
 125a: 8b 55 f4 mov edx,DWORD PTR [ebp-0xc]
 125d: 65 33 15 14 00 00 00 xor edx,DWORD PTR gs:0x14
 1264: 74 05 je 126b <vulfoo+0x5e>
 1266: e8 e5 00 00 00 call 1350 <__stack_chk_fail_local>
 126b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 126e: c9 leave
 126f: c3 ret

...

...

RET

Saved ebp

tmpbuf
0x84 = 132

bytes

ebp

Canaryebp - 0xc

0x84 - 0xc =
0x78
= 120

esp

formats2
0000120d <vulfoo>:
 120d: f3 0f 1e fb endbr32
 1211: 55 push ebp
 1212: 89 e5 mov ebp,esp
 1214: 53 push ebx
 1215: 81 ec 84 00 00 00 sub esp,0x84
 121b: e8 f0 fe ff ff call 1110 <__x86.get_pc_thunk.bx>
 1220: 81 c3 b0 2d 00 00 add ebx,0x2db0
 1226: 65 a1 14 00 00 00 mov eax,gs:0x14
 122c: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 122f: 31 c0 xor eax,eax
 1231: 83 ec 0c sub esp,0xc
 1234: 8d 85 7c ff ff ff lea eax,[ebp-0x84]
 123a: 50 push eax
 123b: e8 60 fe ff ff call 10a0 <gets@plt>
 1240: 83 c4 10 add esp,0x10
 1243: 83 ec 0c sub esp,0xc
 1246: 8d 85 7c ff ff ff lea eax,[ebp-0x84]
 124c: 50 push eax
 124d: e8 3e fe ff ff call 1090 <printf@plt>
 1252: 83 c4 10 add esp,0x10
 1255: b8 00 00 00 00 mov eax,0x0
 125a: 8b 55 f4 mov edx,DWORD PTR [ebp-0xc]
 125d: 65 33 15 14 00 00 00 xor edx,DWORD PTR gs:0x14
 1264: 74 05 je 126b <vulfoo+0x5e>
 1266: e8 e5 00 00 00 call 1350 <__stack_chk_fail_local>
 126b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 126e: c9 leave
 126f: c3 ret

...

...

RET

Saved ebp

tmpbuf
0x84 = 132

bytes

ebp

Canaryebp - 0xc

va_arg Addr 1
Addr 2

Arbitrary Memory Read

python2 -c "print
'\x08\x70\x55\x56\x1a\x70\x55\x56__%x.%x.%x.%x.%s.%s'" >
/tmp/exploit

./formats2 < /tmp/exploit

formats11
int vulfoo(char *argv1)

{

char buf[20];

FILE *fp = NULL;

printf(argv1);

printf("\n");

while (1)

{

fp = fopen("/tmp/exploit", "r");

if (fp)

break;}

fread(buf, 1, 100, fp);

fclose(fp);

remove("/tmp/exploit");

return 0;}
Canary enabled; print_flag is in the address space

int main(int argc, char*argv[]) {

 if (argc != 2)

 return 0;

printf("print_flag() is at %p\n", print_flag);

vulfoo(argv[1]);

 return 0;

}

